
International Journal of Multiphase Flow 35 (2009) 952–962
Contents lists available at ScienceDirect

International Journal of Multiphase Flow

journal homepage: www.elsevier .com/locate / i jmulflow
Application of the scale entropy diffusion model to describe a liquid
atomization process

Christophe Dumouchel *, Sébastien Grout
CNRS UMR 6614 – CORIA, Université et INSA de Rouen, Avenue de l’Université – BP 12, 76 801 Saint Etienne du Rouvray, France

a r t i c l e i n f o a b s t r a c t
Article history:
Received 28 November 2008
Received in revised form 27 February 2009
Accepted 7 May 2009
Available online 15 May 2009

Keywords:
Liquid spray
Atomization process
Multiscale analysis
Scale entropy diffusion model
0301-9322/$ - see front matter � 2009 Elsevier Ltd. A
doi:10.1016/j.ijmultiphaseflow.2009.05.002

* Corresponding author. Tel.: +33 232953623.
E-mail address: Christophe.Dumouchel@coria.fr (C
Whatever the situation, liquid atomization processes show a continuous evolution of the liquid system
shape. However, such a system is a multiscale object, i.e., its shape cannot be fully described by a single
geometrical parameter. The present work makes use of the scale entropy function to describe this
multiscale object. This function is found similar to the scale distribution previously introduced to take
into account the droplet shape in liquid spray characterization. Time-averaged scale entropy is locally
measured on images of atomizing liquid flows issuing from a low injection pressure single-hole triple-
disk nozzle. The advantage in using this nozzle is that the atomization process and the spray are inscribed
in a plane and can be fully described by 2-D visualizations. The measurements are performed from the
nozzle exit down to the spray region. The operating conditions consider varying injection pressure and
liquid physical properties. The temporal evolution of the scale entropy is described by the scale entropy
diffusion model. Initially developed in turbulence, this model introduces new parameters such as the
scale diffusivity and the local scale entropy flux sink, which characterize the diffusion dynamic of the
scale entropy in the scale space. For the first time, these parameters are measured and strong correlations
between them and the working conditions are evidenced. Furthermore, new parameters are introduced
such as a scale viscosity and the total scale entropy flux lose. These results demonstrate the relevance of
the scale entropy diffusion model to describe a liquid atomization process. This application is the first of
its kind.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The most encountered liquid spray production process consists
in ejecting a liquid flow into a gaseous environment. Free of any
parietal constraints, the liquid flow issuing from the nozzle de-
forms thanks to the growth of perturbations. Perturbation growth
stretches the liquid until fragments detach from the bulk flow.
According to the situation these fragments may experience an
equivalent process and disintegrate into smaller fragments and
so on until the surface tension cohesion forces are great enough
to prevent from further disintegration. During the whole mecha-
nism, the ratio of surface to mass in the liquid is increased
(Mansour and Chigier, 1991).

Three major factors control a liquid atomization process,
namely, the initial shape of the liquid flow, the presence of initial
disturbances and mechanisms that allow some of these distur-
bances to grow until disintegration occurs. The characteristics of
the resulting spray depend on these factors. The issuing flow char-
acteristics, and therefore the choice of the injector nozzle, are of
paramount important since they control the initial shape of the
ll rights reserved.
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liquid flow. Furthermore, this flow may also convey initial distur-
bance sources through the presence of velocity fluctuations,
boundary layers, turbulent structures or cavitation for instance.
According to the situation, surface tension forces, aerodynamic
forces, shear stress or momentum exchange between the two
phases can pilot disturbance growth. As emphasized in a recent re-
view (Dumouchel, 2008), in most situations, several perturbations,
characterized by a wide range of characteristic time and length
scales, emerge during an atomization process explaining why
spray droplets are highly dispersed in size. Furthermore, because
of the implication of issuing liquid flow characteristics such as
those mentioned above, an atomization mechanism is intermit-
tent. Thus, the characterization and analysis of liquid flow distor-
tions during an atomization mechanism are difficult tasks at the
origin of a lack of a universal atomization model so far.

The literature abounds in atomization mechanism visualiza-
tions (Dumouchel, 2008 for instance). Whatever the situation, an
atomization mechanism can be seen as a continuous evolution of
the shape of a liquid system. However, an atomizing liquid system
is a geometric object with a complex boundary: thus its shape
description requires sophisticated tool such as the concept of
fractal dimension introduced by Kolmogorov (Hunt and Vassilicos,
1991) generalized by Mandelbrot (1982) and extensively used to
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investigate fluid turbulence (Sreenivasan and Meneveau, 1986).
The fractal dimension is an extension of the Euclidean dimension
and allows describing complex boundaries. It is a measure of the
tortuosity, fragmentation or roughness of a surface or a line that
is self-similar over a range of scales, i.e., that presents similar struc-
tures when observed at different magnifications. Fractal analysis is
used in different fields (physics, medicine, etc.). Surprisingly the
application of fractal analysis to study the morphology of atomiz-
ing liquid systems has received very little attention so far.

The first application of fractal analysis to describe the primary
breakup process of a liquid flow is due to Shavit and Chigier
(1995) who considered the liquid gas interface of an air assisted
cylindrical liquid jet. They found that such an interface is a fractal
within a range of scale and that the fractal dimension increases,
reaches a maximum and decreases as the distance from the nozzle
increases. The fractal dimension is a maximum in the region where
the drop production is the most effective. Shavit and Chigier (1995)
also reported that this maximum was related to the breakup length
and to a spray mean drop-diameter. According to the authors, the
fractal nature of the interface of air-assisted liquid jets is a conse-
quence of the interaction of the air turbulence and its eddy struc-
ture with the liquid gas interface. The relevance of using fractal
analysis to characterize an atomization process was confirmed by
a second investigation (Dumouchel et al., 2005b) that considered
liquid stream issuing from low injection pressure simplified cavity
nozzles. Contrary to the situations examined by Shavit and Chigier
(1995), such atomization processes are characterized by low We-
ber numbers revealing the negligible influence of the aerodynamic
forces on the atomization process. In this case, liquid turbulence
initiates interface disturbances and surface tension forces govern
the liquid system distortion and fragmentation (Dumouchel et al.
2005a). This second investigation led to similar conclusions as
those obtained by Shavit and Chigier (1995). A more recent work
due to Grout et al. (2007) reconsidered this investigation. It was
demonstrated that the best fractal analysis method to be used to
locally analyze atomizing liquid flow is the Euclidean Distance
Mapping (EDM). (Shavit and Chigier (1995) and Dumouchel et al.
(2005b) used the box counting method.) EDM provides an analysis
over a wider scale interval. Although Grout et al. (2007) retrieved a
self-similarity of the interface over a limited scale interval, their re-
sults evidenced a scale and time-dependent fractal dimension over
the scale interval covered by the liquid system.

It is interesting to quote here the work due to Yon et al. (2004)
that reports a morphological analysis of a cylindrical liquid jet in
the Rayleigh regime and perturbed at a controlled frequency. A
scale distribution measured on 2-D images characterized the liquid
jet shape evolution during the atomization process. The temporal
evolution of this distribution allowed the temporal growth rate
as well as the wavelength of the Rayleigh regime to be retrieved.
This scale distribution was equivalent to a scale-dependent fractal
dimension.

Thus, the evolution of the morphology of an atomizing liquid
system must be associated to a scale and time-dependent fractal
dimension. We propose in this paper to investigate the relevance
of the scale entropy diffusion model due to Queiros-Conde
(2003) to describe this phenomenon. This model, summarized in
the next section, derives from the entropic-skins geometry formal-
ism initially developed to describe intermittency in fully developed
turbulence (Queiros-Conde, 1999, 2000, 2001). It introduces new
concepts such as the scale diffusivity parameter and the scale en-
tropy flux sink that control the mechanism of scale entropy diffu-
sion in the scale space. The objective of this work is to apply this
concept to describe an atomization process and to determine the
scale diffusivity parameter and the scale entropy flux sink for this
application. The experimental part of the work is presented in
Section 3 and the results and application of the model constitute
Section 4.
2. The scale entropy diffusion model

The scale entropy diffusion model was developed by Queiros-
Conde (2003) to characterize turbulent interfaces. The following
presentation of this model is a summary of what is detailed in ref-
erence (Queiros-Conde, 2003).

Let us consider a multiscale system noted X (such as a 3-D
interface for instance) and characterized by a total volume VT and
a characteristic length l0 called the reference scale of the system.
VT and l0 are assumed to be correlated with each other as VT ¼ ld

0

where d is the embedded dimension of the system. Let us now con-
sider a part of X, called Xi, and defined as the part of the system X
described by covering it with elements whose characteristic length
scale is equal to li. The number Ni of elementary elements required
to cover X is assumed to be dependent on the scale li as follows:

Ni / l�di
i ð1Þ

where di is a local fractal dimension in the scale space, i.e., the frac-
tal dimension di is a function of the scale li. Over the scale range cov-
ered by the system, di varies from d � 1 to d. The volume Vi of the
system Xi is:

Vi / Nil
d
i / ld�di

i ð2Þ

The volume ratio Vi/VT represents the volume fraction of the
system Xi compared to the whole system. On the other hand, the
volume ratio VT/Vi represents the number of volume Vi required
to fully cover the volume VT. Queiros-Conde (2003) introduces
the scale entropy Ri,0 = ln(VT/Vi) in order to quantify the level in
disorder of Xi relative to X: Xi is more localized inside X implies
that Ri,0 is higher. The scale entropy is a global quantity that de-
creases when the scale li increases towards the reference scale l0.
Using the above equations, we can write:

Ri;0 ¼ ln
VT

Vi

� �
/ ln

ld
0

ld�di
i

 !
/ ðdi � dÞ lnðliÞ ð3Þ

The evolution of the scale entropy in the logarithm scale space
is proportional to the local fractal dimension. In order to quantify
how scale entropy cascades through scale space, one introduces
the scale entropy flux /i:

/i ¼
Ri;0 � Ri�1;0

ln li
l0

� �
� ln li�1

l0

� � ð4Þ

with li < li�1. Contrary to Ri,0, /i is a local quantity in the scale space.
Assuming that li�1 and li are close enough to assume a constant frac-
tal dimension di for scales belonging to ]li; li�1], Eq. (4) can be
rewritten as:

/i ¼ di � d ð5Þ

The scale entropy flux is similar to the local fractal dimension di.
In other words, a purely fractal system (di = cte) has a constant
scale entropy flux. As di varies from d � 1 to d, /i varies from �1
to 0. Eqs. (4) and (5) are rewritten using new notations, namely,
x = ln(li/l0), R(x) = Ri,0 and /(x) = /i, it comes:

/ðxÞ ¼ dRðxÞ
dx

¼ dðxÞ � d ð6Þ

The flux variation throughout the scale space and expressed by
Eq. (6) results from a sink of scale entropy flux which is quantified
by introducing a scale entropy flux sink x(x) defined by a unit of
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scale logarithm (it is in fact a scale entropy flux density). Through-
out the scale space, the scale entropy flux continuity between x and
x + dx is expressed by:

/ðxþ dxÞ � /ðxÞ �xðxÞdx ¼ 0 ð7Þ

The flux that enters at x (�/(x), remember that / is negative) is
equal to the issuing flux at x + dx (�/(x + dx)) plus the flux lost in
this scale interval (x(x)dx).The combination between Eqs. (6) and
(7) leads to the following relationship between the scale entropy
and the scale entropy flux sink:

d2RðxÞ
dx2 �xðxÞ ¼ 0 ð8Þ

A purely fractal system is characterized by a constant scale en-
tropy flux (see Eq. (6)) and therefore corresponds to a scale entropy
flux sink x(x) = 0 (all over the scale range for which the system is
fractal). In other words, systems with a scale-dependent fractal
dimension are characterized by the existence of a function x(x)
whose form is not imposed and can remain general. Using experi-
mental results of the literature, Queiros-Conde (2003) showed that
turbulent interfaces could be described by a uniform scale entropy
flux sink in the scale space, i.e., x(x) = cte. Le Moyne et al. (2008)
adopted a similar approach to characterize sprays produced by a
diesel injector. In the present paper, this function is determined
for a specific atomization mechanism.

Queiros-Conde (2003) emphasizes the analogy between Eq. (8)
and the one-dimensional conduction equation: the scale entropy
R(x) would correspond to the temperature, the scale entropy flux
/(x) to a quantity proportional to a heat flux and x(x) to a quantity
proportional to a volumetric heat sink, which would be space
dependent. He then considered the more general situation where
the scale entropy R(x) of the system is also time dependent and be-
comes R(x, t). This case occurs when the local fractal dimension is
time dependent (d(x, t)) due to non-stationary fluctuations or for
some experiments where multiscale construction is observed in
time. In this case, the scale entropy flux sink becomes also time
dependent (x(x, t)) and carrying the analogy with heat equation,
Queiros-Conde (2003) suggests describing time-dependent scale
entropy with the following diffusion equation:

o2Rðx; tÞ
ox2 �xðx; tÞ ¼ 1

v
oRðx; tÞ

ot
ð9Þ

where v, the scale diffusivity, characterizes diffusion of scale entro-
py through scale space. Queiros-Conde (2003) examined the simpli-
fied case where the term o2R(x, t)/ox2 is small compared to the two
other terms for a given scale range [li; l0]. In this scale range, the frac-
tal dimension becomes mainly time dependent and indicates a local
fractal feature of the object (d(x, t) � d(t)) and the term o2R(x, t)/ox2

can be omitted in Eq. (9). This reduced diffusion equation indicates
that the temporal decrease of the scale entropy flux, which is condi-
tioned by the scale diffusivity v, is balanced by the scale entropy flux
sink. (In a heat diffusion problem, this would correspond to a situa-
tion where there is no energy exchange since the storage energy is
equal to the locally produced energy.) By modeling the scale entropy
flux sink as x(x, t) = (d0 – d(t))/|x| where d0 is the fractal dimension
imposed at scale l0 by an external mechanism, and by using Eqs.
Table 1
Liquid physical properties (percentages indicate weight proportion), discharge coefficien
corresponding to the maximum injection pressure, i.e., 0.25 MPa for heptane and 0.5 MPa

Liquid qL (kg/m3) lL (kg/ms)

Heptane 740 0.41 � 10�3

Water 991 1.00 � 10�3

Water–ethanol 1% 986 1.01 � 10�3

Water–ethanol 10% 972 1.43 � 10�3
(6) and (9), Queiros-Conde (2003) obtained the following fractal
dimension temporal evolution in this simplified case:

dðtÞ ¼ d0 � ðd0 � dðt ¼ 0ÞÞe� t
s� ð10Þ

where the characteristic time s* = |x|2/v. Queiros-Conde (2003)
found this simplification appropriate to characterize scalar passive
turbulent interface.
3. Experimental work

3.1. Experimental setup and diagnostic

This section summarizes the experimental setup and diagnostic
since details can be found elsewhere (Grout et al. 2007; Dumou-
chel et al. 2008a, 2008b). The liquid to be atomized is kept in a
pressurized closed tank. The liquid feeding line is composed of a
filter, a valve to control the liquid flow rate and a manometer that
measures the injection pressure DPi just upstream the injector.
Table 1 presents the four liquids used within this work together
with their physical properties. The injection pressure is kept low
and ranges from 0.15 to 0.5 MPa except for heptane, the lowest
surface tension fluid, for which it varies from 0.05 to 0.25 MPa.

All the experiments are conducted with a unique injector that
has a single discharge orifice. The injector nozzle is a triple-disk
nozzle whose geometry is inspired from compound injector
encountered in low-pressure port-fuel injection engines. Fig. 1a
and b provides a sketch of the triple-disk nozzle whose dimensions
are given in Table 2. The liquid enters disk 1, expands in the cavity
disk (disk 2) and discharges through disk 3 orifice. As soon as the
liquid issues from the nozzle, the flow expands in the (O, x, z) plane
and stretches as a 2-D liquid sheet. (Evidences of the 2-D organiza-
tion are available in Dumouchel et al. (2005a).) Perturbations of
different characteristic length-scale appear on the sheet edges in
the near nozzle region. At this stage, small droplets might detach
from the liquid sheet edges. Further downstream, the sheet more
and more deforms and reorganizes as a ligament network that
eventually breaks into droplets. As demonstrated in a previous
investigation (Dumouchel et al. 2005a), two main characteristics
of the liquid flow at the nozzle exit are responsible for this behav-
ior. The nozzle internal geometry imposes drastic flow deflections
and favors the development at the exit section of a counter-rotat-
ing double-swirl, characterized by a non-axial kinetic energy, as
well as a consistent turbulent level. The double-swirl is responsible
for the flow 2-D stretch in the (0, x, z) plane and the turbulence ini-
tiates perturbations. As going downstream, the double-swirl effect
weakens and liquid sheet contraction occurs due to surface tension
forces. The effect of this contraction is conditioned by the deforma-
tion initially imposed by the turbulence and results in the ligament
network production. The rather good efficiency of this atomization
mechanism is due to the shaping of the issuing liquid flow as a flat
liquid sheet: the characteristic length scale of a sheet (its thick-
ness) being less than the one of cylindrical jet (its diameter) that
would produce the injector in the absence of the double-swirl
structure. Some typical characteristics of the flow issuing from
the nozzle are given in Table 1, namely, the discharge coefficient
t CD, gaseous Weber number WeG and Reynolds number Re (WeG and Re are those
for the other liquids).

r (N/m) CD (–) WeG (–) Re (–)

0.0206 0.63 2.7 5300
0.0720 0.63 1.3 3700
0.0659 0.61 1.3 3500
0.0461 0.61 1.9 2500



Table 2
Injector triple-disk nozzle dimensions.

Thickness (lm) Hole diameter (lm) Eccentricity (lm)

Disk 1 177 300 0
Disk 2 75 2254 0
Disk 3 76 180 200

b

Disk 1 

Disk 2 

Disk 3 

Eccentricity 

x 
y 

z 

a 

c d 
Fig. 1. Geometry of the injector nozzle and visualization of the atomization mechanism. (a) Nozzle side view and coordinate system, (b) nozzle top view, (c) image of the flow
issuing from the nozzle (water, DPi = 0.4 MPa, (0; x; z) plane), and (d) corresponding two gray-level silhouette image and position of the analyzing window at t0 = 115.9 ls.
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CD, the gaseous Weber number WeG and the Reynolds number Re
defined by:

CD ¼
4Qv

pd2
or

ffiffiffiffiffiffiffi
2DPi
qL

q ; WeG ¼
qGV2

qdor

r ; Re ¼ qLVqdor

lL
ð11Þ

where Qv is the volume flow rate, dor the nozzle orifice diameter, qL

and qG (=1.2) the liquid and gas density, respectively, Vq the average
axial velocity, r the surface tension and lL the liquid dynamic viscos-
ity. The volume flow rate was measured by weighting the amount of
liquid collected during a controlled time interval and the average
velocity was calculated by dividing the volume flow rate by the noz-
zle orifice section. The Weber and Reynolds numbers shown in Table
1 are those obtained for the maximum injection pressure. It is inter-
esting to consider the Weber numbers, which is the ratio between the
aerodynamic forces and the cohesion surface tension forces. As dem-
onstrated in a previous investigation (Dumouchel et al. 2005a), the
low Weber numbers (<3) indicate a negligible contribution of the
aerodynamic forces to the atomization mechanism that is mainly
controlled by the surface tension forces.

As described above, the atomization mechanism is orientated in
the (O, x, z) plane, i.e., all liquid structures and droplets are in-
scribed in this plane. Thus, investigation of this mechanism can
be satisfactorily approached by 2-D visualizations. Images of the
flow are taken in the (O, x, z) plane only. A backlight arrangement
is chosen. The light source has a very short pulse-duration
(11 ns) in order to freeze the liquid system. A camera with a high
number of pixels (3040 � 2016 pixel2) is used to reach a good
spatial resolution. The image covers a field of 10.5 � 7 mm2 corre-
sponding to a spatial resolution equal to 3.47 lm/pixel. Consider-
ing the greatest liquid velocity, the maximum displacement
during the flash duration is equal to 0.29 lm that is far less than
the distance covered by 1 pixel. Thus, the images show very well
frozen liquid flow and spray for each working condition. An exam-
ple of image is shown in Fig. 1c. The optical arrangement provides
a depth of field equals to 7 mm. This depth is much greater than
the thickness of the atomizing liquid flow. Thus, no liquid frag-
ments and droplets are out-of-focus and they are all visualized
with a very good contrast. Finally, 150 images are taken and ana-
lyzed for each working condition.

3.2. Image treatment

The image treatment consists in making two gray-level images.
The objective of the analysis is to investigate the liquid atomization
mechanism from the nozzle exit down to the spray region. In con-
sequence and contrary to what was done in a previous investiga-
tion (Grout et al. 2007) all the liquid is taken into account in the
present analysis, namely, the continuous liquid flow attached to
the nozzle (continuous liquid phase) as well as all detached liga-
ments and droplets (dispersed liquid phase). Furthermore, as we
concentrate on the liquid phase only, the two gray-level images
we produced are silhouette images where the liquid phase appears
in white on a black background. The image treatments developed
to segregate liquid pixels from background pixels have been de-
tailed in Grout et al. (2007) and Dumouchel et al. (2008b) for the
continuous and dispersed liquid phases, respectively.

The detection of the continuous liquid phase is performed on
the blue frame of the image since its gray-level distribution re-
ported the largest dynamic. A double-threshold technique was
used. Furthermore, a dilation-erosion step was applied to limit
the production of extra liquid–gas interface tortuosity caused by
light refraction through the liquid flow (refer to Grout et al.
(2007) for more details). The detection of the dispersed liquid
phase is performed on the green frame. Contrary to the continuous
liquid phase detection, a single threshold is used to segregate
liquid and background pixels. Furthermore, because of slight
contrast difference from one image to another, a threshold is deter-
mined for each individual image from the analysis of the gray-level
distribution. As mentioned above, no liquid structures, fragments



956 C. Dumouchel, S. Grout / International Journal of Multiphase Flow 35 (2009) 952–962
or droplets are out-of-focus since they are all inscribed in the visu-
alization plane. This ensures sharp gray-level gradients at the
liquid–gas interface and therefore a phase segregation procedure
insensitive to the choice of the threshold provided that this thresh-
old was reasonably varied.

Before conducting the image analysis, a couple of tests are per-
formed on each detected element of the dispersed liquid phase.
First, groups of pixels less than 6 pixels are removed. Thus, the
minimum detectable drop equivalent diameter D0 (calculated by
surface conservation) is fairly less than 10 lm. Second, light scat-
tered by the drops may have two undesirable effects. On big drops,
some internal pixels might be identified as background pixels.
These pixels are easily identifiable and given the liquid gray-level
value. On small droplets, light scattering might result in bad en-
coded drops and produce separated groups of pixels. These groups
of pixels are characterized by a small equivalent diameter D0 and a
low circularity parameter C defined as 4 multiplied by the ratio of
the surface area to the square of the perimeter. This circularity var-
ies from 0 to 1, the latter value corresponding to a circle. Because
the surface tension cohesion forces are inversely proportional to
the drop diameter, small liquid droplets are expected to be spher-
ical and characterized by rather high circularity C. After several
tests, we obtained a condition to identify non-circular small ob-
jects that corresponded to badly encoded droplets: all groups of
pixels such that D0 < 75 � 60C (where D0 is expressed in lm) were
removed. Fig. 1d shows the two gray-level silhouette image of the
initial image shown in Fig. 1c.
3.3. Image analysis

The study of the whole atomization mechanism, i.e., from the
nozzle exit down to the spray, is performed by conducting local anal-
ysis of the shape of the liquid system. To achieve this, portion of the
liquid phase delimited by a rectangular Analyzing Window (AW) is
analyzed as a function of the position of this window. The height of
the window is hAW = 200 pixels and its position is located by the
distance dAW from the nozzle exit and the analyzing window middle
line. (Fig. 1d shows the analyzing window.) The choice of the height
hAW might be critical and will be discussed later. Note that at
positions where the analyzing window intercepts the continuous
liquid phase, it delimits portion of liquid interface that constitute
‘‘open” objects. It was demonstrated (Grout et al. 2007) that the best
appropriate fractal analysis method to characterize the shape of such
objects is the Euclidean Distance Mapping (EDM) method. This
method is used in the present analysis.

EDM is a sausage method that has been described in many ref-
erences (see Bérubé and Jébrak (1999) for instance). Its application
to the present silhouette images can be summarized as follows. Let
us consider the presence of N objects in the Analyzing Window.
These objects can be detached ligaments, droplets or a portion of
the continuous liquid phase. Each object delimits a surface area
noted Si so that the total surface area ST covered by the liquid phase
in the Analyzing Window is given by:
ST ¼
XN

i¼1

Si ð12Þ

Each object contained in the Analyzing Window is described as
follows. We consider the line defined by the inner points all located
at a given distance r (called scale) from the object boundary. The
surface area Si(r) comprised between this line and the object
boundary is measured as a function of the scale r. We introduce
the reference scale ri of the object i as the smallest scale r that al-
lows the object to be fully covered, i.e., Si(ri) = Si. For any scale
greater than the reference scale, the delimited surface Si(r) is kept
constant and equal to Si. Then, for the set of N objects contained in
the Analyzing Window, we introduce the total surface area S(r) at
scale r defined as the contribution of each object at this scale,
namely:

SðrÞ ¼
XN

i¼1

SiðrÞ ð13Þ

If the function S(r) reports a dependence with the scale r of the
form:

SðrÞ ¼ Krð2�dÞ ð14Þ

where K is a constant, the liquid system is a fractal object and d is its
fractal dimension. Thus, the plot of S(r) as a function of r in a log–log
scale would report a linear correlation. This plot is the Richardson–
Mandelbrot plot. The determination of the fractality of an object or
a system can go through the analysis of the local slope of a Richard-
son–Mandelbrot plot, i.e., the slope as a function of the scale (Panico
and Sterling, 1995; Guessasma et al., 2003): the object is fractal if
the local slope sustains a constant value over a spatial scale range
bounded by the inner and outer cutoff scales and the corresponding
fractal dimension can be extracted from the slope.

In the present study, the function S(r) is measured for several
positions of the Analyzing Window on each image. However, since
the experimental protocol does not provide a temporal resolution
of the liquid system behavior, the representative spatial evolution
of this function requires a temporal averaging based on the analy-
sis of the 150 images available for each operating condition. To
perform this averaging, we must pay attention to the fact that,
for a given operating condition and a given Analyzing Window po-
sition dAW, the total surface area of the liquid phase may differ from
one image to another. To overcome these problems, the local shape
of the liquid system is characterized by the new function S(r) de-
fined by:

SðrÞ ¼

P150
j¼1

SðrÞ
ST

� �
j

150
ð15Þ

where the index j refers to the image number. The function S(r)
evolves from 0 to 1 and is similar to a cumulative distribution. In
previous investigations (Dumouchel et al. 2008a,b) this function,
called the cumulative surface-based scale distribution, was used
to characterize liquid spray droplets. Contrary to the traditional
drop-diameter distributions, S(r) is explicitly dependent on the
shape of the droplets. To be consistent with these previous investi-
gations, the scale r is replaced by the scale D = 2r in the following
(thus the reference scale of a circular object is equal to its diameter).
If, in average, the liquid system is a fractal object with a fractal
dimension d, a similar equation as Eq. (14) stands for the cumula-
tive surface-based scale distribution, namely:

lnðSðDÞÞ / ð2� dÞ lnðDÞ ð16Þ
4. Results and application of the model

Fig. 2 shows an example of measured cumulative surface-based
scale distributions (water, DPi = 0.4 MPa). S(D) is presented as a
function of the equivalent time t defined by t = dAW/Vq. The physical
representativeness of this equivalent time requires a rather con-
stant velocity of the liquid that is framed by the image. It can be
first shown that the Froude numbers Fr ¼ Vq=

ffiffiffiffiffi
gL

p
where g is the

acceleration due to gravity and L a characteristic length of the
problem (taken here equal to the length covered by the image)
are always greater than about 30. Thus, the variation of velocity
due to gravity is negligible. Second, liquid velocity may vary also
because of air drag forces: these forces cause the smaller drops
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to lose velocity more rapidly than the larger droplets or the contin-
uous liquid phase. This phenomenon was quantified by Rizk and
Lefebvre (1984). For working conditions similar to those of the
present work, they found that, at 10 mm from the injector, the
reduction of velocity of drops greater than 100 lm never exceed
10% and is of the order of 30% for 40 lm drops. In consequence,
the reduction of velocity of the small drops is not negligible. How-
ever, measurements performed in the spray (bottom of the images)
revealed that the surface-fraction represented by the drops with
diameter less than 50 lm never exceed 10%. Thus, these drops
have a small contribution to the cumulative surface-based scale
distribution and we assume that the equivalent time is suitable
for the purpose of the work. This equivalent time is now used in-
stead of the position throughout the paper.

The smallest time shown in Fig. 2 corresponds to the position of
the Analyzing Window that is the closest to the nozzle exit
(dAW = 0.7 mm) and the greatest time corresponds to the window
localized in the spray region. As expected S(D) increases monoto-
nously from 0 to 1 in the scale space. The limit 1 is reached at the ref-
erence scale D0 of the system, i.e., the smallest scale required to fully
cover the liquid system. In the small scale region (D < 30 lm), S(D)
reports a ‘parallel increase’ with time that illustrates the increase
of surface fraction covered at these scales during the atomization
mechanism, i.e., the emergence of smaller and smaller liquid struc-
tures. When t > 300 ls, the scale distribution is not time-dependent
anymore and characterizes the final spray.

The reference scale D0 varies with time as illustrated in Fig. 3.
(D0 is estimated as the smallest scale for which the first deriva-
tive of the curves shown in Fig. 2 is less than 0.01.) At t = 0, the
liquid is at the nozzle exit section where the reference scale is
equal to the diameter of the orifice, i.e., 180 lm. When time in-
creases, D0 increases, becomes a maximum D0Max and decreases
to finally reach a constant value D0Spray. The increase of D0 at the
nozzle exit is a manifestation of the liquid system stretching in
the plane of observation due to the action of the issuing flow
double-swirl structure. This evolution is controlled by the dy-
namic of the issuing flow and depends on the injection pressure.
The maximum reference scale D0Max is reached when the
stretching process ends because of modifications of the liquid
system shape imposed by surface tension forces. At this stage, li-
quid gulfs and ligaments are created and prevent any further in-
crease of the reference scale. Then, the intensification of the
atomization mechanism leads to the formation of smaller and
smaller liquid structures, which is represented by a continuously
decreasing reference scale. The asymptotic value D0Spray, which
corresponds to the reference scale of the spray, is reached when
the atomization process is completed. The scale D0Spray and the
time at which it is reached are both functions of the injection
pressure as illustrated in Fig. 3. They are also dependent on
the liquid physical properties. Finally, it is interesting to note
in this figure that an increase of the scale D0Max is accompanied
by a decrease of the scale D0Spray. This behavior makes sense
since an increase of D0Max reveals a decrease of the thickness
of the liquid sheet and thinner liquid sheets produce smaller
drops.

The distribution S(D) offers a multiscale description of the
atomization mechanism by quantifying, at each time, the partici-
pation of each scale on the whole system shape. The interesting re-
sult in Fig. 2 is that the distribution S(D) continuously evolves from
the nozzle exit down to the spray region. This evolution describes
the whole atomization mechanism. Being presented in a log–log
scale, Fig. 2 is equivalent to a Richardson–Mandelbrot plot. As ex-
plained above, the examination of the local slope of this plot in-
forms on the fractal property of the system (see Eq. (16)). We
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calculated the local slope LS(D) for each time and deduced the
function d(D) defined by:

dðDÞ ¼ 2� LSðDÞ ð17Þ

In agreement with the EDM method, this function is the local
fractal dimension in the scale space (see Eq. (16)). Fig. 4 shows
the local fractal dimension as a function of time for the situation
corresponding to Fig. 2. The local fractal dimension evolves from
1 to 2 when covering the liquid system scale range. For times less
than 200 ls, d(D) first increases with D, reaches a plateau whose
inclination increases with time, and sharply increases to reach 2
at D = D0. Within the scale interval where the plateau is percepti-
ble, the local fractal dimension is almost independent of the scale
denoting a fractal property of the system in these scale and time
intervals. This fractal property characterizes the tortuosity of the
interface and ignores the system as a whole (Grout et al. 2007),
and the corresponding fractal dimension is a textural fractal
dimension as defined by Kaye (1989). It was reported (Grout
et al. 2007) that this fractal dimension correlates with the liquid
Reynolds number evidencing the impact of turbulence on the
liquid sheet edge tortuosity in the near nozzle region. For times
greater than 200 ls, the plateau is not perceptible anymore and
d(D) monotonously increases. For times greater than 300 ls, d(D)
stabilizes as well as the distribution S(D) in Fig. 2: these functions
characterize the final spray.

The results in Figs. 2 and 4 were obtained with a 200 pixels
(700 lm) height Analyzing Window. This height belongs to the
scale range covered by the liquid system when t < 200 ls and the
increase of d(D) towards 2 spreads on this particular value. An
influence of the Analyzing Window height on the results must be
suspected and investigated. For the nearest position of the Analyz-
ing Window (dAW = 0.7 mm) Fig. 5 shows the function d(D) in the
scale range [100 lm; 1000 lm] as a function of the Analyzing Win-
dow height hAW. When hAW > 200 pixels (700 lm), the increase of
d(D) spreads over a larger and larger scale range as hAW increases.
When hAW increases, the Analyzing Window catches thinner and
larger sections of the continuous liquid system (above and under
the window, respectively) and consequently extends the scale
range covered by the whole object. This dependency should be
interpreted as a lack of analysis localness.

When hAW 6 200 pixels, d(D) losses its dependency with this
parameter: the scale range over which d(D) increases remains
unaffected by any modification of the Analyzing Window height.
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Fig. 5. Influence of the analyzing window height hAW on the scale-dependent fractal
dimension d(D) (water, DPi = 0.25 MPa, t = 50 ls).
This means that this specific scale range is representative of the
temporal variation of the liquid system at this particular position.
This temporal variation is caught here thanks to the analysis of 150
images. In other words, the asymptotic function d(D) obtained for
sufficiently small Analyzing Window height is a signature of the
intermittency of the atomization mechanism. The work was con-
ducted with a constant Analyzing Window height equal to
200 pixels.

The results presented in Fig. 4 shows that the evolution of the
liquid system morphology during the atomization mechanism is
characterized by a scale and time-dependent fractal dimension.
The model presented in Section 2 (Eq. (9)) was established for such
situations and should be considered to describe the experimental
observations.

The present experimental work is based on image analysis,
which imposes an embedding dimension d equal to 2. The compar-
ison between Eqs. (3) and (16) shows that the function R(D) = ln(1/
S(D)) is equivalent to a scale entropy function. As shown in Fig. 4,
the local fractal dimension d(D) varies from 1 to 2. Thus, the func-
tion /(D) = d(D) – 2 varies from �1 to 0 and represents the scale
entropy flux function in the scale space (see Eqs. (4)–(6)). Thus,
the evolution of the scale distribution can be described by the
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Fig. 6. Temporal evolution of Y for the spray reference scale D0Spray. (a) Heptane,
DPi = 0.05 MPa, D0Spray = 285 lm, t0 = 238 ls, and (b) water, DPi = 0.4 MPa,
D0Spray = 219 lm, t0 = 115.9 ls.
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diffusion equation (Eq. (9)). This equation introduces the scale dif-
fusivity v and the scale entropy flux sink x(x, t) that are experi-
mentally determined as follows.

As observed in Fig. 4, over a limited time interval and for a lim-
ited scale range, the fractal dimension is mainly a function of time,
i.e., d(D, t) � d(t). (This scale range is the one for which the liquid
system boundary is fractal.) For these scales and during this time
interval, the term o2R(x, t)/ox2 is much smaller than the two other
terms in Eq. (9) and can be omitted. As demonstrated by Queiros-
Conde (2003), the corresponding temporal evolution of the fractal
dimension in this situation is given by Eq. (10). This equation can
be rewritten as:

lnðYÞ ¼ � t
s�

ð18Þ

where

Y ¼ dðtÞ � d0

dðt ¼ 0Þ � d0
ð19Þ

This simplified solution is applicable in a scale range and in a
time interval provided that 1 – the fractal dimension in this scale
range is mainly a function of time (d(D, t) � d(t)), 2 – the fractal
dimension of these scales tends towards d0 as time increases (see
Eqs. (18) and (19)), and 3 – the reference scale of the system is con-
stant during the time interval (dD0/dt = 0). The present results
show that these assumptions are satisfied by the scale D0Spray (ref-
erence scale of the spray) around the time t0 (time at which the
system reference scale is maximum). First, at time t0, the scale
D0Spray always belongs to the scale range where fractality is ob-
served (see Fig. 4 for instance). Thus, the first assumption is satis-
fied. Second, by definition, the fractal dimension of the spray
reference scale tends towards d0 when time increases as required
by the second assumption. Third, by definition, dD0/dt = 0 at t = t0

and it can be seen in Fig. 3 that, around t0, the system reference
scale (D0Max) moderately varies with time. The third assumption
is satisfied. In consequence, the temporal variation of the fractal
dimension at scale D0Spray around time t0 should follow the linear
dependence expressed by Eq. (18) and should allow the determina-
tion of the characteristic time s*.

For each working condition, the function Y is calculated for the
reference scale of the spray D0Spray, i.e., the time-dependent fractal
dimension in Eq. (19) corresponds to the dimension measured for
this scale as a function of time. Furthermore, d(t = 0) is taken equal
to 1 since the liquid system is not deformed at the nozzle exit. The
function Y is then plotted as a function of time in a semi-log graph.
Such graphs are presented in Fig. 6a and b for different operating
conditions. As expected, these figures show that the function Y is
always less than 1 and monotonously decreases as time increases.
The time t0 is indicated in these graphs. As explained above and
according to Eq. (18), the linearity between ln(Y) and t around time
t0 should provide the characteristic time s*. Therefore, a linear cor-
relation is calculated in the Y = f(t) plots using three points, namely,
Y(t0) and the values of Y for the preceding and the following times.
These linear regressions are shown in Fig. 6a and b. In all the situ-
ations, the three points used to calculate the linear regression
aligned well. This signifies that for the scale D0Spray and around
time t0, the solution equation (10) of the reduced diffusion equa-
tion provides a good temporal evolution of the local fractal dimen-
sion. This observation validates the assumption and underlines a
sufficient temporal resolution of the analysis. Furthermore, in
many situations, it has been observed that the linear regression
spreads over the triplet of points used for the calculation (see
Fig. 6a for instance). According to Eq. (18), the slope of this linear
regression gives the characteristic time s* from which the scale dif-
fusivity v can be obtained. Referring to Eq. (10), the scale diffusiv-
ity is given here by:
v ¼
ln2 D0Spray

D0Max

� �
s�

ð20Þ

Fig. 7 presents the scale diffusivity as a function of the injection
pressure for all working conditions. The figure shows a strong
organization of this parameter with the injection pressure as well
as with the liquid physical properties. The scale diffusivity in-
creases with the injection pressure. Increasing the injection pres-
sure is modeled here as an increasing diffusion dynamic, which
describes a greatest propensity of producing small scales, and
finally small drops. The same variation is observed when the liquid
surface tension coefficient decreases. When this coefficient de-
creases, smaller liquid structures can develop, and an increase of
the diffusion dynamic describes this behavior. The dependencies
between the scale diffusivity and the injection pressure shown in
Fig. 7 are linear for each fluid, i.e.:

v / DPi

l�
ð21Þ
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The coefficient l* introduced by Eq. (21) is dimensionally equiv-
alent to a dynamic viscosity. It is calculated from the slope of the
linear regressions shown in Fig. 7 and presented in Fig. 8 as a func-
tion of the liquid surface tension. This figure reports a strong cor-
relation between l* and the surface tension coefficient. It has to
be reminded that the surface tension forces mainly govern the
atomization mechanism investigated here. It is therefore note sur-
prising that the parameter l* that characterizes the dynamic of the
liquid system shape evolution during the atomization mechanism
correlates with the surface tension.

The diffusion model also introduces the scale entropy flux sink
x(x, t) that is defined by unit of scale logarithm. This function is
also a characteristic of the atomization process. It can be
determined by using the diffusion equation (Eq. (9)) and the scale
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Fig. 9. Temporal evolution of the scale entropy (top), the scale entropy flux (
diffusivity v found. (We assume here that the scale diffusivity is
independent of the scale.) Example of the scale entropy flux sink
as a function of time is presented in Fig. 9. This figure also shows
the corresponding evolution of the scale entropy R(x, t) = ln(1/
S(x, t))) and of the function /(x, t) = oR(x, t)/ox = d(x, t) – 2. The
function /(x, t) is negative indicating that the scale entropy flux
is directed towards the increasing x. In Fig. 9, the variable x has
been calculated by using the initial reference scale of the liquid
system, i.e., the diameter dor of the discharge orifice. The functions
in Fig. 9 are presented for four times. The first time (38.6 ls) corre-
sponds to the smallest distance between the nozzle and the ana-
lyzing window. The second time (115.9 ls) corresponds to the
time t0 for this operating condition. And the forth time (540.9 ls)
is a time at which the diffusion process is completed. At each time,
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the function x(x, t) (bottom of Fig. 9) is mainly positive over the
scale space: this indicates a lost of local scale entropy flux. For
the smallest time shown in Fig. 9 (38.6 ls) we note that the scale
entropy flux sink function is negative in the medium scale range.
This characterizes a gain of scale entropy flux. This supplementary
flux diffuses towards the increasing x following the scale entropy
gradient and induces an increase of the scale entropy in the large
scale and therefore an increase of the reference scale with time
(see Fig. 9 top). The diffusion of this supplementary flux lasts until
t = t0. As explained above, the increase of the reference scale ob-
served at the beginning of the process is due to the effect of the
double-swirl structure of the flow issuing from the nozzle. This
demonstrates that the function x(x, t) carries information in rela-
tion with the issuing liquid flow.

At the end of the atomization process, the distribution of scale
entropy in the scale space becomes independent of the time and
the diffusion equation simplifies as Eq. (8). Making use of Eq. (6),
it can be shown that, at this stage, the function x(x) is normalized,
i.e., it fulfills the following condition:Z þ1

�1
xðxÞdx ¼ 1 ð22Þ

We introduce here a new function x(t) defined by:

xðtÞ ¼
Z þ1

�1
xðx; tÞdx ð23Þ

At each time, x(t) represents the total scale entropy flux lost
over the whole scale space. Examples of this function are presented
in Figs. 10 and 11. Fig. 10 shows x(t) for water at four injection
pressures. The first point to be noted is that for great time t, the
limit 1 is almost reached. The slightly underestimated values of
x(t) for these times result from spatial resolution limitation: it
can be seen in Fig. 9 that x(x, t) is not closed in the small scale
range. Fig. 10 shows that the total scale entropy flux lost during
the atomization process increases, reaches a maximum and de-
creases towards the limit 1. This figure reports a clear correlation
between x(t) and the injection pressure; an increasing injection
pressure being represented by a decrease of the total scale entropy
flux loses over the scale space. At each time Fig. 11 also shows very
organized x(t) as a function of the liquid physical properties. In
particular it can be seen that a sharp reduction of the surface ten-
sion induces a decrease of the maximum of x(t). The results pre-
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sented in Figs. 10 and 11 show that the production of finer
sprays is accompanied by a global decrease of x(t) (when DPi in-
creases or when r decreases for instance). As shown in Fig. 7, this
behavior is also related to an increase of the scale diffusivity. Thus,
atomization efficiency improvement can be reached by increasing
the propensity of the scale entropy to diffuse in the small scale,
phenomenon that requires greater scale diffusivity and reduced
lose of scale entropy flux. All these results demonstrate the rele-
vance of scale entropy diffusion model to describe a liquid atom-
ization process and encourage exploring this new way of
apprehending liquid atomization and spray systems.
5. Conclusion

This study presents the first attempt in applying the scale entro-
py diffusion model developed by Queiros-Conde (2003) to describe
a liquid atomization process. During an atomization process, the
shape of the liquid system continuously evolves. The model de-
scribes the evolution of this shape. The shape of the local liquid
system is characterized by the scale entropy distribution in the
scale space, distribution equivalent to the surface-based scale dis-
tribution introduced in previous works (Dumouchel et al. 2008a,b).
The evolution of the scale entropy in the scale space is associated
to a diffusion equation similar to a 1-D spatio-temporal heat diffu-
sion equation. It therefore introduces a scale diffusivity, which
characterizes the propensity of a scale to develop, as well as a scale
entropy flux sink, which contributes to the local balance of scale
entropy fluxes represented by the local fractal dimension. Both
the scale diffusivity and the scale entropy flux sink are experimen-
tally determined. This is the first time such measurements are per-
formed. Correlations found between the operating conditions
(injection pressure and liquid physical properties) and the diffu-
sion characteristics (scale diffusivity and scale entropy flux sink)
underline the relevance of this model to describe liquid atomiza-
tion mechanism. Among other results, connections between the
characteristic of the flow issuing from the nozzle and the scale en-
tropy flux sink are evidenced. Therefore, the scale entropy diffusion
model provides a new way of apprehending liquid atomization
mechanisms and should be encouraged. This work also demon-
strates the pertinence of the scale entropy diffusion model to de-
scribe physical processes involving shape evolution.
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